**[1] **S. Sivanagaraju, *Power system operation and control*. Pearson Education India, (2009).

**[2] **K. W. Edwin, H. D. Kochs, and R. J. Taud, Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination, *IEEE Trans. Power Appar. Syst.*, PAS-97, 6, (1978), 2154–2166.doi: 10.1109/TPAS.1978.354719.

**[3] **A. I. Cohen and M. Yoshimura, A branch-and-bound algorithm for unit commitment, *IEEE Trans. Power Appar. Syst.*, 2, (1983), 444–451.

**[4] **J. A. Muckstadt and R. C. Wilson, An Application of Mixed-Integer Programming Duality to Scheduling Thermal Generating Systems, *IEEE Trans. Power Appar. Syst.*, 87, 12, (1968), 1968–1978. doi: 10.1109/TPAS.1968.292156.

**[5] **F. Zhuang and F. D. Galiana, Towards a more rigorous and practical unit commitment by Lagrangian relaxation, *IEEE Trans. Power Syst.*, 3, 2, (1988), 2, 763–77.

**[6] **G. B. Sheble, Solution of the unit commitment problem by the method of unit periods, *IEEE Trans. Power Syst.*, 5, 1, (1990), 257–260.doi: 10.1109/59.49114.

**[7] **S. Khunkitti, N. R Watson, R. Chatthaworn, S. Premrudeepreechacharn, and A. Siritaratiwat, An improved DA-PSO optimization approach for unit commitment problem, *Energies*, 12, 12, (2019), 2335.

**[8] **V. K. Kamboj, A novel hybrid PSO–GWO approach for unit commitment problem, *Neural Comput. Appl.*, 27, 6, (2016), 1643–1655.

**[9] **A. Bhadoria, S. Marwaha, and V. K. Kamboj, An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm, *Neural Comput. Appl.*, (2019), 1–30.

**[10] **S. Kigsirisin and H. Miyauchi, Short-Term Operational Scheduling of Unit Commitment Using Binary Alternative Moth-Flame Optimization, *IEEE Access*, 9, (2021), 12267–12281.

**[11] **A. Bhadoria and S. Marwaha, Moth flame optimizer-based solution approach for unit commitment and generation scheduling problem of electric power system, *J. Comput. Des. Eng.*, 7, 5, (2020), 668–683.

**[12] **M. Farsadi, H. Hosseinnejad, and T. S. Dizaji, Solving unit commitment and economic dispatch simultaneously considering generator constraints by using nested PSO,*ELECO 2015 - 9th Int. Conf. Electr. Electron. Eng.*, (2016), 493–499. doi: 10.1109/ELECO.2015.7394478.

**[13] **A. Singh and A. Khamparia, A hybrid whale optimization-differential evolution and genetic algorithm based approach to solve unit commitment scheduling problem: WODEGA, *Sustain. Comput. Informatics Syst.*, 28, (2020), 100442. doi: 10.1016/j.suscom.2020.100442.

**[14] **Y. Zhai, X. Liao, N. Mu, and J. Le, A two-layer algorithm based on PSO for solving unit commitment problem, *Soft Comput.*, 24, 12, (2020), 9161–9178.

**[15] **A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, *Power generation, operation, and control*. John Wiley & Sons, (2013).

**[16] **P. K. Singhal and R. N. Sharma, Dynamic programming approach for solving power generating unit commitment problem, in *2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)*, (2011), 298–303.

**[17] **S. U. Rani and C. H. P. Raju, A Solution to Unit Commitment Problem via Dynamic Programming and Particle Swarm Optimization, *Int. J. Curr. Eng. Technol.*, 3, 4, (2013).

**[18] **J. Kennedy and R. Eberhart, Particle swarm optimization, in *Proceedings of ICNN’95-international conference on neural networks*,4, (1995), 1942–1948.

**[19] **P. Sriyanyong and Y. H. Song, Unit commitment using particle swarm optimization combined with Lagrange relaxation, in *IEEE Power Engineering Society General Meeting*, (2005), 2752–2759.

**[20] **Y. Shi and R. Eberhart, A modified particle swarm optimizer, in *1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360)*, (1998), 69–73.

**[21] **J. A. Boudreaux, Design, Simulation, and Construction of an IEEE 14-Bus Power System, 42, (2018).